Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(5): 103620, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38492249

RESUMO

Chicken ovarian follicle development is regulated by complex and dynamic gene expression. Nuclear receptor 5A1 and 5A2 (NR5A1 and NR5A2, respectively) are key genes that regulate steroid hormone production and gonadal development in mammals; however, studies on follicular development in the chicken ovary are scarce. In this study, we investigated the functions of NR5A1 and NR5A2 on follicle development in chickens. The results showed that the expression of NR5A1 and NR5A2 was significantly higher in small yellow follicles and F5. Furthermore, the expression of NR5A1 and NR5A2 was significantly higher in follicular tissues of peak-laying hens (30 wk) than in follicular tissues of late-laying hens (60 wk), with high expression abundance in granulosa cells (GC). The overexpression of NR5A1 and NR5A2 significantly promoted proliferation and inhibited apoptosis of cultured GC; upregulated STAR, CYP11A1, and CYP19A1 expression and estradiol (E2) and progesterone (P4) synthesis in GC from preovulatory follicles (po-GC); and increased STAR, CYP11A1, and CYP19A1 promoter activities. In addition, follicle-stimulating hormone treatment significantly upregulated NR5A1 and NR5A2 expression in po-GC and significantly promoted FSHR, CYP11A1, and HSD3B1 expression in GC from pre-hierarchical follicles and po-GC. The core promoter region of NR5A1 was identified at the -1,095- to -483-bp and -2,054- to -1,536-bp regions from the translation start site (+1), and the core promoter region of NR5A2 was at -998 to -489 bp. Two single nucleotide polymorphisms (SNP) were identified in the core promoter region of the NR5A1 gene, which differed between high- and low-yielding chicken groups. Our study suggested that NR5A1 and NR5A2 promoted chicken follicle development by promoting GC proliferation and E2 and P4 hormone synthesis and inhibiting apoptosis. Moreover, we identified the promoter core region or functional site that regulates NR5A1 and NR5A2 expression.

2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339068

RESUMO

Proliferation, apoptosis, and steroid hormone secretion by granulosa cells (GCs) and theca cells (TCs) are essential for maintaining the fate of chicken follicles. Our previous study showed that the Wnt inhibitor factor 1 (WIF1) plays a role in follicle selection. However, the significance of WIF1 in GC- and TC-associated follicular development was not explicitly investigated. This study found that WIF1 expression was strongly downregulated during follicle selection (p < 0.05) and was significantly higher in GCs than in TCs (p < 0.05). WIF1 inhibits proliferation and promotes apoptosis in GCs. Additionally, it promotes progesterone secretion in prehierarchal GCs (pre-GCs, 1.16 ± 0.05 ng/mg vs. 1.58 ng/mg ± 0.12, p < 0.05) and hierarchal GCs (hie-GCs, 395.00 ng/mg ± 34.73 vs. 527.77 ng/mg ± 27.19, p < 0.05) with the participation of the follicle-stimulating hormone (FSH). WIF1 affected canonical Wnt pathways and phosphorylated ß-catenin expression in GCs. Furthermore, 604 upregulated differentially expressed genes (DEGs) and 360 downregulated DEGs in WIF1-overexpressed GCs were found through RNA-seq analysis (criteria: |log2⁡(FoldChange)| > 1 and p_adj < 0.05). Cytokine-cytokine receptor interaction and the steroid hormone biosynthesis pathway were identified. In addition, the transcript of estrogen receptor 2 (ESR2) increased significantly (log2⁡(FoldChange) = 1.27, p_adj < 0.05). Furthermore, we found that WIF1 regulated progesterone synthesis by upregulating ESR2 expression in GCs. Additionally, WIF1 suppressed proliferation and promoted apoptosis in TCs. Taken together, these results reveal that WIF1 stimulates follicle development by promoting GC differentiation and progesterone synthesis, which provides an insight into the molecular mechanism of follicle selection and egg-laying performance in poultry.


Assuntos
Galinhas , Folículo Ovariano , Via de Sinalização Wnt , Animais , Feminino , Proliferação de Células , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Progesterona/metabolismo
3.
Anim Genet ; 55(2): 249-256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194424

RESUMO

The genetic foundation of chicken body plumage color has been extensively studied. However, little attention has been paid to the inheritance patterns and molecular mechanisms underlying the formation of distal feather colors (tail and wingtip). Differences in these colors are common; for example, the Chinese Huiyang Beard chicken has black tail feathers, but yellow body plumage. Here, the hybrid offspring of Huiyang Beard and White Leghorn chickens were used to study the inheritance patterns of tail-feather color. The expression levels of pigment genes in differently colored feather follicles were analyzed using quantitative real-time PCR. The results showed that genetic regulation of tail-feather color was independent of body-plumage color. The Dominant White locus inhibited eumelanin synthesis in tail feathers without affecting the formation of yellow body plumage, whereas the Silver locus had the opposite effect. The expression of agouti signaling protein (ASIP) gene class 1 transcripts was significantly lower in black tail-feather follicles than in yellow body follicles, whereas tyrosinase-related protein 1 (TYRP1) gene expression was significantly higher in black tail feathers. These differentially expressed genes were confirmed to exert an effect on eumelanin and pheomelanin formation in feathers, thus influencing the regulation of chicken tail-feather color. In conclusion, this study lays the foundation for further research on the genetic mechanisms of regional differences in feather color, contributing to a better understanding of plumage pigmentation in chickens.


Assuntos
Galinhas , Cauda , Animais , Galinhas/genética , Proteína Agouti Sinalizadora/genética , Plumas/fisiologia , Expressão Gênica , Pigmentação/genética
4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788641

RESUMO

The Tibetan chicken, a native breed of the Tibetan plateau, is adapted to the high-altitude and hypoxic environment of the plateau. As endogenous molecules, circular RNAs (circRNAs) have been shown to play an important role in the adaptation to hypoxic environments and regulation of angiogenesis. In this study, highland Tibetan and lowland Chahua chicken eggs were incubated in a hypoxic environment and the chorionic allantoic membrane was collected for Ribo-Zero RNA sequencing. A total of 1,414 circRNAs, mostly derived from exons, were identified. Of these, 93 differentially expressed circRNAs were detected between Tibetan and Chahua chickens. Combined with the differentially expressed miRNAs and mRNAs identified in our previous study, we identified four circRNAs (circBRD1, circPRDM2, circPTPRS, and circDENND4C). These circRNAs may act as competing endogenous RNA (ceRNA) to upregulate APOA1 expression by absorbing novel_miR_589, thereby regulating angiogenesis and affecting hypoxia adaptation in chicken embryos. The regulatory circRNAs/novel_miR_589/APOA1 axis provides valuable evidence for a better understanding of the specific functions and molecular mechanisms of circRNAs in plateau hypoxia adaptation in Tibetan chickens.


The chorioallantoic membrane (CAM) is a key respiratory organ involved in early chicken embryo development. It is abundant in blood vessels and plays an important role in gas exchange in the chicken embryo. Hypoxia, a state of insufficient oxygen, can lead to abnormal angiogenesis. Tibetan chickens (TC), owing to their unique genetic background, have adapted to a hypoxic environment and are able to maintain the balance of angiogenesis. In this study, we aimed to identify potential circular RNAs (circRNAs) and their key regulatory networks related to angiogenesis by comparing highland and lowland chickens. Using RNA sequencing, we identified 93 circRNAs that were differentially expressed in the CAM between highland and lowland chickens. The key circRNAs and circRNA-miRNA-mRNA regulatory networks that affect angiogenesis were constructed using bioinformatic methods. This work provides a novel analysis of the molecular mechanisms of hypoxia adaptation in TC.


Assuntos
Galinhas , MicroRNAs , Embrião de Galinha , Animais , Galinhas/genética , RNA Circular/genética , Hipóxia/genética , Hipóxia/veterinária , Análise de Sequência de RNA/veterinária , MicroRNAs/genética , Redes Reguladoras de Genes
5.
Poult Sci ; 102(10): 102971, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562126

RESUMO

The Huiyang beard chicken is a well-known Chinese local breed known for its elongated feathers gathered from both sides of the face (muffs) and below the beak (beard), as well as short wattles (SW). The muff and beard (Mb) mutation is caused by ectopic upregulation of the homeobox B8 (HOXB8) gene in the mandibular skin; and the chi-square test showed a significant correlation between SW and Mb genotypes. However, the underlying molecular mechanisms that regulate Mb and SW variations remain unclear. In this study, we investigated the transcriptomes of the mandibular skin and wattles of chickens with and without the Mb genotype to elucidate the molecular basis of these traits. Our results show that HOXB8 is expressed at significantly higher levels in both the mandibular skin and wattles of Mb chickens than in those of wild-type chickens, indicating that HOXB8 regulates both the Mb and SW phenotypes. Key genes for keratin synthesis were highly expressed in the mandibular skin of Mb chickens, suggesting that HOXB8 may play a role in feather development. In wattles, changes in the expression of extracellular matrix synthesis genes may contribute to SW traits. DNA-binding motif analyses revealed that differentially expressed genes were likely to be directly regulated by HOXB8 binding, indicating that HOXB8 may directly or indirectly regulate feather follicle development and wattle growth. Our study identified both known and novel targets, including several genes not previously implicated in feather development and mesenchymal formation. These findings provide insights into the molecular mechanisms of skin appendage variation in birds and offer potential applications in breeding poultry breeds with unique phenotypes.


Assuntos
Galinhas , Genes Homeobox , Animais , Plumas , Genótipo , Análise de Sequência de RNA/veterinária
6.
J Anim Sci Biotechnol ; 14(1): 91, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37408086

RESUMO

BACKGROUND: Abdominal fat deposition depends on both the proliferation of preadipocytes and their maturation into adipocytes, which is a well-orchestrated multistep process involving many regulatory molecules. Circular RNAs (circRNAs) have emergingly been implicated in mammalian adipogenesis. However, circRNA-mediated regulation in chicken adipogenesis remains unclear. Our previous circRNA sequencing data identified a differentially expressed novel circRNA, 8:27,886,180|27,889,657, during the adipogenic differentiation of chicken abdominal preadipocytes. This study aimed to investigate the regulatory role of circDOCK7 in the proliferation and adipogenic differentiation of chicken abdominal preadipocytes, and explore its molecular mechanisms of competing endogenous RNA underlying chicken adipogenesis. RESULTS: Our results showed that 8:27,886,180|27,889,657 is an exonic circRNA derived from the head-to-tail splicing of exons 19-22 of the dedicator of cytokinesis 7 (DOCK7) gene, abbreviated as circDOCK7. CircDOCK7 is mainly distributed in the cytoplasm of chicken abdominal preadipocytes and is stable because of its RNase R resistance and longer half-life. CircDOCK7 is significantly upregulated in the abdominal fat tissues of fat chickens compared to lean chickens, and its expression gradually increases during the proliferation and adipogenic differentiation of chicken abdominal preadipocytes. Functionally, the gain- and loss-of-function experiments showed that circDOCK7 promoted proliferation, G0/G1- to S-phase progression, and glucose uptake capacity of chicken abdominal preadipocytes, in parallel with adipogenic differentiation characterized by remarkably increased intracellular lipid droplet accumulation and triglyceride and acetyl coenzyme A content in differentiated chicken abdominal preadipocytes. Mechanistically, a pull-down assay and a dual-luciferase reporter assay confirmed that circDOCK7 interacted with gga-miR-301b-3p, which was identified as an inhibitor of chicken abdominal adipogenesis. Moreover, the ACSL1 gene was demonstrated to be a direct target of gga-miR-301b-3p. Chicken ACSL1 protein is localized in the endoplasmic reticulum and mitochondria of chicken abdominal preadipocytes and acts as an adipogenesis accelerator. Rescue experiments showed that circDOCK7 could counteract the inhibitory effects of gga-miR-301b-3p on ACSL1 mRNA abundance as well as the proliferation and adipogenic differentiation of chicken abdominal preadipocytes. CONCLUSIONS: CircDOCK7 serves as a miRNA sponge that directly sequesters gga-miR-301b-3p away from the ACSL1 gene, thus augmenting adipogenesis in chickens. These findings may elucidate a new regulatory mechanism underlying abdominal fat deposition in chickens.

7.
Sci Data ; 9(1): 668, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329062

RESUMO

Bar-headed geese (Anser indicus) are adaptable to plateau environments. In this study, we sequenced and assembled a high-quality chromosome-level genome of the bar-headed goose using PacBio long reads and Hi-C technique, and generated 115.73 Gb of Illumina short-reads and 95.89 Gb of PacBio long-reads. The assembled bar-headed goose genome, with a contig N50 of 5.734 Mb and a scaffold N50 of 65.77 Mb, is 1.129 Gb in length and includes 33 chromosomes and 451 fragments. BUSCO assessment yielded a completeness score of 94.4%. In total, 15,376 protein-coding genes were predicted, of which 94.95% had homologs in protein databases. We identified 78 positively selected genes (PSGs) in the bar-headed goose genome, which were mainly enriched in calcium ion and ATP-binding. This bar-headed goose genome will be an important resource for increasing our understanding regarding the genetic basis of adaptation to life at a high altitude.


Assuntos
Cromossomos , Gansos , Genoma , Animais , Cromossomos/genética , Gansos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de DNA
8.
J Anim Sci Biotechnol ; 13(1): 81, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35791010

RESUMO

BACKGROUND: Excessive abdominal fat deposition in commercial broilers presents an obstacle to profitable meat quality, feed utilization, and reproduction. Abdominal fat deposition depends on the proliferation of preadipocytes and their maturation into adipocytes, which involves a cascade of regulatory molecules. Accumulating evidence has shown that microRNAs (miRNAs) serve as post-transcriptional regulators of adipogenic differentiation in mammals. However, the miRNA-mediated molecular mechanisms underlying abdominal fat deposition in chickens are still poorly understood. This study aimed to investigate the biological functions and regulatory mechanism of miRNAs in chicken abdominal adipogenesis. RESULTS: We established a chicken model of abdominal adipocyte differentiation and analyzed miRNA and mRNA expression in abdominal adipocytes at different stages of differentiation (0, 12, 48, 72, and 120 h). A total of 217 differentially expressed miRNAs (DE-miRNAs) and 3520 differentially expressed genes were identified. Target prediction of DE-miRNAs and functional enrichment analysis revealed that the differentially expressed targets were significantly enriched in lipid metabolism-related signaling pathways, including the PPAR signaling and MAPK signaling pathways. A candidate miRNA, gga-miR-106-5p, exhibited decreased expression during the proliferation and differentiation of abdominal preadipocytes and was downregulated in the abdominal adipose tissues of fat chickens compared to that of lean chickens. gga-miR-106-5p was found to inhibit the proliferation and adipogenic differentiation of chicken abdominal preadipocytes. A dual-luciferase reporter assay suggested that the KLF15 gene, which encodes a transcriptional factor, is a direct target of gga-miR-106-5p. gga-miR-106-5p suppressed the post-transcriptional activity of KLF15, which is an activator of abdominal preadipocyte proliferation and differentiation, as determined with gain- and loss-of-function experiments. CONCLUSIONS: gga-miR-106-5p functions as an inhibitor of abdominal adipogenesis by targeting the KLF15 gene in chickens. These findings not only improve our understanding of the specific functions of miRNAs in avian adipogenesis but also provide potential targets for the genetic improvement of excessive abdominal fat deposition in poultry.

9.
Animals (Basel) ; 12(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35565526

RESUMO

Long non-coding RNAs (lncRNAs) are implicated in mammalian adipogenesis and obesity. However, their genome-wide distribution, expression profiles, and regulatory mechanisms during chicken adipogenesis remain rarely understood. In the present study, lncRNAs associated with adipogenesis were identified from chicken abdominal adipocytes at multiple differentiation stages using Ribo-Zero RNA-seq. A total of 15,179 lncRNAs were identified and characterized by stage-specific expression patterns. Of these, 840 differentially expressed lncRNAs were detected, and their cis- and trans-target genes were significantly enriched in multiple lipid-related pathways. Through weighted gene co-expression network analysis (WGCNA) and time-series expression profile clustering analysis, 14 key lncRNAs were identified as candidate regulatory lncRNAs in chicken adipogenic differentiation. The cis- and trans-regulatory interactions of key lncRNAs were constructed based on their differentially expressed cis- and trans-target genes, respectively. We also constructed a competing endogenous RNA (ceRNA) network based on the key lncRNAs, differentially expressed miRNAs, and differentially expressed mRNAs. MSTRG.25116.1 was identified as a potential regulator of chicken abdominal preadipocyte adipogenic differentiation by acting as a transcriptional trans-regulator of fatty acid amide hydrolase (FAAH) gene expression and/or a ceRNA that post-transcriptionally mediates FAAH gene expression by sponging gga-miR-1635.

10.
Animals (Basel) ; 12(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35327110

RESUMO

Ovarian follicle selection largely depends on the transition of granulosa cells from an undifferentiated to a fully differentiated state, which is accompanied by morphological and functional changes in follicles. The processes and transcriptional regulation of follicles during follicle selection are unclear; we thus used follicles from the prehierarchal to the hierarchal stage to investigate histology, reproductive endocrinology, and transcription. The morphology of follicles changed markedly during follicle selection. The numbers of large white, small yellow, and large yellow follicles (LWF, SYF, and LYF, respectively) were 11.83 ± 2.79, 6.83 ± 2.23, and 1.00, respectively, per ovary. LYF showed thicker granulosa cell layers than those of other prehierarchal follicles. Progesterone concentrations were significantly higher in LYF than that in LWF and SYF. In total, 16,823 genes were positively expressed in LWF, SYF, and LYF. Among follicle types, 1290 differentially expressed genes were enriched regarding cell differentiation, blood vessel morphogenesis, and response to steroid hormones. Candidate genes associated with follicle selection participated in the Wnt signaling pathway, steroid hormone biosynthesis, and the TGF-ß signaling pathway. We produced insights into crucial morphological characteristics of transcriptional regulation in follicle development. Our results provide an important basis for revealing the mechanism of follicle selection and potential impact on the poultry industry.

11.
Cells ; 11(3)2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35159307

RESUMO

Subcutaneous fat thickness and intramuscular fat content are closely related to meat production and quality in the pig industry. Adipogenesis in adipocytes from subcutaneous and intramuscular fat tissues involves different genes and regulatory mechanisms. Analyzing the data of mRNA and miRNA transcriptomes during the differentiation of adipocytes from these two sources will help identify the different mechanisms of subcutaneous and intramuscular fat deposition. In this study, RNA sequencing technology was used to analyze the differential expression of genes and miRNAs in subcutaneous and intramuscular adipocytes at days 0, 2, 4, and 8 of differentiation. We mainly attributed the difference between fat depositions of the two types of adipocytes to variations in the expression patterns of related genes. Through combined weighted gene co-expression network analysis and K-MEANS, we identified 30 and 22 genes that mainly regulated the differentiation of subcutaneous adipocytes and intramuscular adipocytes, respectively. A total of 17 important candidate miRNAs were identified. This study provides valuable reference for the study of different mechanisms of adipogenesis among subcutaneous and intramuscular fat and contributes to improving pig breeding.


Assuntos
Adipogenia , MicroRNAs , Adipócitos/metabolismo , Adipogenia/genética , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Gordura Subcutânea/metabolismo , Suínos , Transcriptoma/genética
12.
Front Cell Dev Biol ; 9: 761638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869349

RESUMO

Circular RNA (circRNA), as a novel endogenous biomolecule, has been emergingly demonstrated to play crucial roles in mammalian lipid metabolism and obesity. However, little is known about their genome-wide identification, expression profile, and function in chicken adipogenesis. In present study, the adipogenic differentiation of chicken abdominal preadipocyte was successfully induced, and the regulatory functional circRNAs in chicken adipogenesis were identified from abdominal adipocytes at different differentiation stages using Ribo-Zero RNA-seq. A total of 1,068 circRNA candidates were identified and mostly derived from exons. Of these, 111 differentially expressed circRNAs (DE-circRNAs) were detected, characterized by stage-specific expression, and enriched in several lipid-related pathways, such as Hippo signaling pathway, mTOR signaling pathway. Through weighted gene co-expression network analyses (WGCNA) and K-means clustering analyses, two DE-circRNAs, Z:35565770|35568133 and Z:54674624|54755962, were identified as candidate regulatory circRNAs in chicken adipogenic differentiation. Z:35565770|35568133 might compete splicing with its parental gene, ABHD17B, owing to its strictly negative co-expression. We also constructed competing endogenous RNA (ceRNA) network based on DE-circRNA, DE-miRNA, DE-mRNAs, revealing that Z:54674624|54755962 might function as a ceRNA to regulate chicken adipogenic differentiation through the gga-miR-1635-AHR2/IRF1/MGAT3/ABCA1/AADAC and/or the novel_miR_232-STAT5A axis. Translation activity analysis showed that Z:35565770|35568133 and Z:54674624|54755962 have no protein-coding potential. These findings provide valuable evidence for a better understanding of the specific functions and molecular mechanisms of circRNAs underlying avian adipogenesis.

13.
Cells ; 10(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450983

RESUMO

In animals, muscle growth is a quantitative trait controlled by multiple genes. Previously, we showed that the transient receptor potential channel 1 (TRPC1) gene was differentially expressed in muscle tissues between pig breeds with divergent growth traits base on RNA-seq. Here, we characterized TRPC1 expression profiles in different tissues and pig breeds and showed that TRPC1 was highly expressed in the muscle. We found two single nucleotide polymorphisms (SNPs) (C-1763T and C-1604T) in TRPC1 that could affect the promoter region activity and regulate pig growth rate. Functionally, we used RNAi and overexpression to illustrate that TRPC1 promotes myoblast proliferation, migration, differentiation, fusion, and muscle hypertrophy while inhibiting muscle degradation. These processes may be mediated by the activation of Wnt signaling pathways. Altogether, our results revealed that TRPC1 might promote muscle growth and development and plays a key role in Wnt-mediated myogenesis.


Assuntos
Desenvolvimento Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Suínos/crescimento & desenvolvimento , Suínos/genética , Canais de Cátion TRPC/genética , Animais , Sequência de Bases , Diferenciação Celular , Fusão Celular , Linhagem Celular , Movimento Celular , Proliferação de Células , Haplótipos/genética , Hipertrofia , Camundongos , Mioblastos/citologia , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canais de Cátion TRPC/metabolismo
14.
Sci Rep ; 10(1): 12088, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694523

RESUMO

Yellow plumage is common in chickens, especially in breeds such as the Huiyang Bearded chicken, which is indigenous to China. We evaluated plumage colour distribution in F1, F2, and F3 populations of an Huiyang Bearded chicken × White Leghorn chicken cross, the heredity of the yellow plumage trait was distinguished from that of the gold plumage and other known plumage colours. Microscopic analysis of the feather follicles indicated that pheomelanin particles were formed in yellow but not in white feathers. To screen genes related to formation of the pheomelanin particles, we generated transcriptome data from yellow and white feather follicles from 7- and 11-week-old F3 chickens using RNA-seq. We identified 27 differentially expressed genes (DEGs) when comparing the yellow and white feather follicles. These DEGs were enriched in the Gene Ontology classes 'melanosome' and 'melanosome organization' related to the pigmentation process. Down-regulation of TYRP1, DCT, PMEL, MLANA, and HPGDS, verified using quantitative reverse transcription PCR, may lead to reduced eumelanin and increased pheomelanin synthesis in yellow plumage. Owing to the presence of the Dominant white locus, both white and yellow plumage lack eumelanin, and white feathers showed no pigments. Our results provide an understanding of yellow plumage formation in chickens.


Assuntos
Perfilação da Expressão Gênica , Expressão Gênica , Folículo Piloso/metabolismo , Melaninas/genética , Pigmentação , Transcriptoma , Animais , Galinhas , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Melaninas/metabolismo , Fenótipo , Característica Quantitativa Herdável
15.
Mol Med Rep ; 13(5): 3828-34, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26985869

RESUMO

The aim of the present study was to investigate the expression of c-erbB-2 and macrophage migration inhibitory factor (MIF) in endometrial cancer and to elucidate the significance of the early diagnosis and prognosis of endometrial cancer. The gene copy number of c­erbB­2 and MIF was characterized by reverse transcription quantitative polymerase chain reaction and the reactivity was assessed by immunohistochemistry in 70 patients using a polyclonal antibody, and evaluated semiquantitatively according to the percentage of cells demonstrating membranous or diffuse cytoplasmic staining. A correlation between age, tumor stage, grade, myometrial invasion and lymph node metastasis was observed. The mRNA expression of c­erbB­2 and MIF was high in endometrial carcinoma. The positive expression rate of MIF protein in normal endometrium, atypical hyperplasia and endometrial carcinoma significantly increased along with the degree of aggravation of the disease by 20 (3/15), 45 (9/20) and 70% (35/50), respectively. The positive expression of MIF and c­erbB­2 was highest in endometrial cancer and a significantly higher level of protein was observed in tumors at stage I, stage G1, with a depth of myometrial invasion <0.4 cm and no lymph node metastasis. The protein expression of c­erbB­2 in endometrial cancer was higher in tumors at the G2­3 phase, clinical stage III­IV, lymph node metastasis, and had no association with the depth of myometrial invasion and age. MIF and c­erbB­2 were correlated with the occurrence and the development of endometrial cancer, and thus can be used for the early diagnosis and prognosis of endometrial cancer. The present study laid the foundation for identifying new treatments for endometrial cancer.


Assuntos
Neoplasias do Endométrio/metabolismo , Regulação Neoplásica da Expressão Gênica , Oxirredutases Intramoleculares/biossíntese , Fatores Inibidores da Migração de Macrófagos/biossíntese , Miométrio/metabolismo , Receptor ErbB-2/biossíntese , Adulto , Neoplasias do Endométrio/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Miométrio/patologia , Invasividade Neoplásica , Estadiamento de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...